Phase Transition with Non-Thermo dynamic States in Reversible Polymerization

E. Ben-Naim! and P. L. Krapivsky?

!Theoretical Division and Center for Nonlinear Studies,
Los Alamos National Laloratory, Los Alamos, New Mexico 87545 USA
2Department of Physics, Boston University, Boston, Massachusetts 02215 USA

We investigate a reversible polymerization processin which individual polymers aggregate and
fragment at a rate proportional to their molecular weight. We nd a nonequilibrium phasetransition
despite the fact that the dynamics are perfectly reversible. When the strength of the fragmentation
processexceedsa critical threshold, the system reaches a thermodynamic steady state where the
total number of polymers is proportional to the system size. The polymer length distribution hasa
sharp exponertial tail in this case. When the strength of the fragmentation processfalls below the
critical threshold, the steady state becomesnon-thermodynamic as the total number of polymers
grows sub-linearly with the system size. Moreover, the length distribution has an algebraic tail and
the characteristic exponent varies contin uously with the fragmentation rate.
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I. INTR ODUCTION

Equilibrium systemsrelax to a steady state described
by the Gibbs distribution. In contrast, nonequilibrium
systemsare speci ed by the dynamics rather then by a
Hamiltonian, and there is no general framework for de-
scribing nonequilibrium steady states. Furthermore, un-
like equilibrium phasetransitions that are characterized
by robust universality classes[1], nonequilibrium phase
transitions are highly sensitive to details of the underly-
ing dynamics [2].

In this paper, we investigate polymerization dynamics,
and we report that competition betweenaggregationand
fragmentation results in a remarkable non-equilibrium
phasetransition. Despite the fact that the dynamics are
perfectly reversible, there is a nonequilibrium phasetran-
sition from a thermodynamic state where the number of
polymers is proportional to the system sizeinto a non-
thermodynamic state where the number of polymers is
not proportional to the systemsize.

Reversible polymerization is ubiquitous in polymer and
atmospheric chemistry [3{5], and has analogiesin net-
works [6] and computer science[7{9]. Rewversible poly-
merization includes two competing processes: (i) The
aggregation process|[i] + [j] ! [i + j], merger of two
polymer chains of lengthsi and j into a larger polymer,
occurs with the aggregationrate K ; (i) The fragmen-
tation process[i + j]! [i]+ [j]. breakage of a polymer
into two smaller polymers, proceedswith rate Fj . This
processis reversible becausethe aggregationprocessand
the fragmentation processperfectly mirror ead other.

Reversible polymerization is described by the master
equations[10]
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where ¢ (t) is the density of polymer chains composed
of k monomersat time t. The rst two terms describe
changesdue to aggregation and the next two terms ac-
court for changesdue to fragmentation. The aggregation
and fragmenrtation rates are (non-negative) symmetric
matrices, Kj = Kj; and Fj; = Fj;. The determinis-
tic master equations are a surrogate model for the ac-
tual stochastic aggregation-fragmemation process. The
master equationsyields exact averageconcerrations for
in nitely large systems.

In the simplest case,the steady state distribution is
found by equating the aggregation °ux with the frag-
mentation °ux,

Kij c¢ =FjGqj: 2
This detailed balance condition speci es an equilibrium
state wherethe °uxes betweenany two microscopicstates
of the system balance. Such an equilibrium steady state
exists for example when both the aggregation and the
fragmentation rates are constart [11]. Another equilib-
rium state was found in a model of strings at very high-
temperatures with the rates Kj = ij and Fj = i+ j
[12].

The detailed balance equation (2) admits a solution
only when the aggregationand fragmenrtation rates sat-
isfy special relations, as shown in Appendix A. In gen-
eral, the steady state distribution is speci ed by the full
master equations (1) and moreover, the detailed balance
relations (2) may very well be violated. For example,in
a \chipping" processwhere only end-monomerscan de-
tach from the polymer, the matrix F; is sparse:F; = 0
when both i;j , 2. For constart aggregationrates, the
chipping processexhibits a nonequilibrium phasetransi-
tion. When the fragmertation rate falls below a certain
threshold, a giant macroscopicpolymer emerges[13{16].

We considerthe aggregationand fragmentation rates

Ki =1j; Fij = .: (3)
Theserates, while intermediate betweenthe linear chain
model [11] and the string model [12], violate detailed



balance (see Appendix A). The product aggregation
rate accourts for the natural situation in which any two
monomersmay form a chemical bond, thereby leading to
merger of their respective polymers. This polymerization
processhas been widely studied in polymer chemistry
[17A421] and in the context of percolation [22{25]. The
constart fragmertation rate re°ects situations where all
chemical bonds in the linear polymer are equally likely
to break, thereby leading to breakage into two smaller
polymers. This de-polymerization processhas also been
studied extensiwely [26]. Like the aggregationrate, the
fotal fragmertation rate is linear in the molecularweigft,

ivj=k Fi =, (ki 1).

Starting with N monomers, we study the nonequilib-
rium steady states that emergein the reversible poly-
merization process(3). We nd that the system gener-
ally reaches a steady state, and that a nonequilibrium
phasetransition occursat the critical fragmentation rate
,c = 1. The averagetotal number of polymers, N ,
grows algebraically with the systemsizeN,
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when fragmertation is weak,, < , .. The total nhumber
of polymers grows sub-linearly with the system size be-
cause® < 1. Moreover, large polymers are likely as the
polymer sizedistribution hasa broad algebraictail. The
system dewelops this non-thermodynamic state through
a gelation transition. We probe this gelation using mo-
ments of the sizedistribution.

In cortrast, the system reaches an ordinary steady
state when the fragmertation processis strong. The av-
erage total number of polymers is proportional to the
systemsize, N = (Lj . i )N, when, > .. Large
polymers becomerare sincethe polymer sizedistribution
has a sharp exponertial tail.

Interestingly, even though the polymerization pro-
cessis reversible becausethe underlying aggregation
([iT+ 0G1Y [i+j)andfragmenation ([i +j]! [1+[])
processesperfectly mirror ead other and none of the
transition rates (3) vanish, the breakdown of detailed
balance leads to a remarkable phase transition involv-
ing a non-thermodynamic phase where the number of
polymers is not proportional to the system size and a
thermodynamic phasewhere the number of polymers is
proportional to the systemsize.

The rest of this paper is organized as follows. The
thermodynamic steady states that occur under strong
fragmertation are examined in the next section, while
the non-thermodynamic steady states that emergewhen
fragmentation is weak are analyzed in sectionIll. The
gelation transition is probed using the momerts of the
size distribution in section IV. Monte Carlo simulation
results validating the theoretical predictions for the non-
thermodynamic phase are detailed in section V. We
discussthe results and seweral open-endedquestionsin
section VI. AppendicesA{C contain seweral technical
derivations.

II. THERMOD YNAMIC PHASE

Our focusis the steady state behavior and in particu-
lar, the stationary polymer sizedensity ¢k that satis es

X

% jcgi ka=1, q+’§(ki1)ck: (5)
i+j=k j>k

This steady state equationis obtained by substituting the
aggregationand fragmertation rates (3) into the station-
ary masterequation (1). At the steadystate, changesdue
to aggregation,represerted on the left hand side, balance
changesdue to fragmentation, represened on the right
hand side. Sinceboth aggregationand fragmertagon do
not alter the total mass,the overall massdensity |, kog
is a consened quartit y, asfollows from the rgte equation
(1). We corveniertly set the normalization | kee = 1
without loss of generality.

The total polymer density Mo = | ¢ is the most
elemenary probe for the state of the system. At the
steady state, this quartit y satis es

1
Ez’i(li Mo); (6)
an equation gbtained by sumgiing (5) gsd by using the
identity i kG = % ke 1= j(j i 1)g and
the normalization condition |, kce = 1. The total den-
sity is non-zero

Mo=1j ,'% 7

when the fragmentation rate is su+ciently strong,, > 1.
We focus on this strong fragmertation regimein the rest
of this section.

Let us assumethat the systemis large but nite with
a total massequal N, a state that can be achieved by
starting with N monomers, for examge. The expected
total number of polymers, Nt = N, & = NMg is
proportional to the system size N, and therefore, the
systemis in a thermodynamic state.

The polymer sizedensity can be calculated by utilizing
the recurrent nature [27] of Equation (5). For instance,
the monomer and the dimer densitiesare

(8a)

(i 1B, +1)
= = . : 8b
R VIR (80
In general,the polymer sizedensity is nite in the ther-
modynamic phase,, > 1. Very large polymers are rare
sincethe sizedistribution decays exponertially

C ' Aki52¢l Ak, (9)

whenk! 1 . This result is derived in Appendix B.
When fragmentation is extremely strong, the system
consists primarily of monomers: ¢; = 1+ O(, ' 1) and



c=,i1+0(1?) when, ! 1. The leadingasymp-
totic behavior canbe obtained exactly in this strong frag-
mentation limit,

kk] 2u2ﬂki 1

Ck ' T ; (10)
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for all k. This expression,obtained in Appendix C, is
compatible with the genericexponertial tail (9).

The near-critical behavior

The total density, the monomerdensity, and the dimer

density all vanish nearthe transition point, My ' (, i 1),
a' 3(.ilyandc' i(,i 1as,! 1. This behavior
suggeststhe perturbativ e approad,

G = 2D (11)

with the small parameter2 = | | 1. The rst two co-
excients are by = § and b, = 1. We substitute this
form into the stationary equation (5) and obsene that
the nonlinear aggregationterm / 22 is negligible. Conse-
quertly, to leading order, the polymer sizedensity obeys

the linear recursion equations

R 1
kb = b i EWilMA (12a)
j=k+1
X 1
(k+ Dby = b i ékbm: (12b)
j=k+2

The secondequation is obtained from the rst by an in-
dex shift. We subtract the two equations and obtain a
recursion relation for the coexcients by,

bK+l _ ki

b k +

The coezxcients can be conveniertly expressedas a ratio
of Gamma functions, b / j(kj 1=3)=i( k + 4=3), by
using the identity j( x + 1)=j( X) = x. The polymer size
density is therefore

W=

(13)

[REN

b = Lit3)iCki 3).
2i(3)i(k+ 3)’

(14)

where the proportionality constart is setby b, = %
Near criticalit y, the sizedensity is algebraic,

o » 2ki 573; (15)

over asubstartial range,k ¢ ka. This result follows from
(14) and limy;  x2j( x)=i( x + a) = 1. Therefore, the
likelihood of "nding large polymers becomessubstartial
as the phasetransition point is apprquwed. The cuto®
scale k., set by mass consenation, t‘;l kek = 1, 0s
divergen

Ko » 21 3: (16)
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The sizedistribution is sharply suppressedaccording to
(9) beyond this scale. Using the relation A » ai 172,
derived in appendix B, and a » ki ! we deducethat
G » 2 3=2)i 5=24 const £ 2% k (17)
for k A ke. Indeed, this large size behavior matchesthe
small size behavior (15) at the crosswer scale(16). We
concludethat the convolution term, that accouns for the
creation of very large polymers from smaller polymers, is
relevant only at very large scales,k A k.. Otherwise,
this term doesnot a®ectthe density of small polymers.
For completenesswe mertion that thg leading asymp-
totic behavior of the momerts, M, = | k"¢, readily
follows from the density (15) and the cuto® (16),
2i 3(ni 1) > 2=3

Ma > 1 n< 2=3:

(18)

Suzciently large order momerts divergein the vicinity of
the transition point, a consequencef the algebraic tail
(15). The low order momerts are nite, however.

111, NON-THERMOD YNAMIC  PHASE

As the critical point is approaded, the nonlinear con-
volution term in (5) becomesdrrelevant over the divergert
scale(16). By cortinuity, we deducethat the corvolution
term is negligiblewhen, < 1. Consequetly, the station-
ary distribution obeysthe linear equation

0 1

b3 X
ko=, @ ai gAi S(ki Do (19)

when, <pl. We intrggluce the normalized size density,

Y2 = &= | G, with K, 1 Y& = 1. With this transfor-
mation, the stationary equation (19) becomes
0 1
kg =, @1 %AiEUﬁ 1)%: (20)

j=1

The monomerand dimer densitiesfollows immediately,

v~ s .
/41+,

B

(21a)

2
14 — s .
% 1+ ,)4+3)

(21b)
The normalized densities undergo a phasetransition at
,c = 1, asshawn in gure 1. The fraction of monomers
is not a®ectedby the corvolution term and (21a) holds
for all ,. However, the dimer density (21b) di®ersfrom

the expression¥z = ﬁfm—%) for , < 1 implied by
(8b) and (7). Similarly, the normalized size densities %

exhibit a phasetransition for all k > 1.



0.2 T T T T T T T T

0.15

r,0.10- -

0.05

0086~02 04 06 08 10

1

FIG. 1: The normalized dimer density ¥ versusthe normal-
ized monomer density ¥2. The phasetransition at , . = lisre-
°ected by the discontinuity in the “rst derivative at ¥2 = 1=2.

Generally, we recast Eg. (20) into the following recur-
sion for the normalized densities

Yo+1 - ki 2+, .
RN (TR

(22)

This recursion is obtained by repeating the steps
leading to (13). Again, we express the nor-
malized densities as a ratio of Gamma functions,

!l i(ki m—)=i(k+ =) The monomer density
(21a) setsthe proportionality constart and hence,

3 e 3
1 + 2(1+ 5 ) . k .,
I T
s i 2+, | k 2+
The sizedensity has an algebraic tail,
%o» ki with S = 22-:_ 3:’ ; (24)

ask ! 1, thereby implying that large polymers are
likely. The decay exponert 1 < =~ < 5=3 is not uni-
versal. Of course, this power-law behavior matches the
near-critical tail (17) since” ! 5=3when, ! 1.

The sizedensity obeyscy / %, and the N -dependert
proportionalit y congart is obtained from the masscon-
senation condition |, _, kcc = 1 wherethe upper limit
of integration is set by the systemsize. This sumis dom-
inated by the density of large polymers. By performing
the summation, we nd that the polymer size density
dependson the systemsize

& » N i 2ki (25)
The total number of clustersNy; » N | ¢« grows sub-
linearly with the systemsizeNy; » N° with ° = 7| 1as
announcedin (4). Therefore, the total polymer density,
Mo » N i 2 dependson the systemsizein cortrast with
the behavior when , > 1. In deriving the steady state

4

equation (19), we assumedthat the convolution term is
negligible. This assumption is consistert with the fact
that the amplitude N i 2 in (25) vanishesasthe system
sizediverges.

Moreover, the expectedtotal number of polymer of size
K, Cx = N, is asfollows, C, » N ki with ° = 2—%;—
ThIS steady state is not thermodynamic! The number of
polymers is much smaller then the system size, yet the
number of polymersstill divergeswith the total mass: Cy
grows sub-linearly with the systemsizebecause® < 1.

For irreversible polymerization, , = 0, all masseven-
tually endsup in a single giant polymer, as re°ected by
the characteristic exponert ° = 0. The total number of
polymers still grows sub-linearly, Ny » N 272, when the
critical point is approached,, ! 1.

In the thermodynamic phase, all polymers are nite
in size. Indeed, the exponertial tail behavior (9) im-
plies that the largest polymers are nite in scale. Near
criticalit y, the scaleof the largest polymers divergesac-
cording to (16). In the non-thermodynamic phase,there
are polymers of all possiblescalesbecausethe power-law
behavior (25) holds up to the systemsize/ N. Remark-
ably, there are polymers that contain a nite fraction of
all the massin the systembecauseaccorgingto (25), the
total number of macroscopicclusters, N
is of the order one.

There are therefore very di®erent behaviors in the two
phases. In the theormodynamic phase, there are many
small clusters. In the non-thermodynamic phase, there
are a few large clusters. A small number of macroscopic
clusters cortain a fraction of the masswhile the rest of
the massis contained in clusters of all possiblescalesup
to the systemsize.

The power-law distribution (24) accourts for a compe-
tition betweentwo °uxes. There is a °ux of massfrom
small scalesto large scalesthat is generatedby the aggre-
gation processand a °ux from large scaleto small scales
causedby fragmertation. The power-law behavior holds
for all scales,indicating that thesetwo °uxes balanceat
all intermediate scales.Similar competitions betweenthe
°uxes occur in °uid turbulence [28], passiwe scalaradvec-
tion [29], wave turbulence [30], granular gases[31], and
driven aggregation systems[32{34]. Howewer, reversible
polymerization di®ersfrom these driven systemin that
there is no external injection of massto maintain the
steady-state.

k, const:£ N Ck

IV. THE GELA TION TRANSITION

We now study the approadc toward the steady state
speci ed by the full master equation

'JQCji ko + |

_ E (ki 1ck:(26)
i>k

Initially , there are only monomers,cc(t = 0) = #.1.



First, we considerthe total polymer density M that
obeysthe linear rate equation
dMy _ 1
da =~ '2
Subject to the initial condition M(0) = 1, the total den-
sity is

+ 5 (L0 Moy @)

Mo=1; i1+ ile B2 (28)
Hence, the steady state (7) is approaced exponen-
tially fast in the thermodynamic phase. Moreover, the
monomerand the dimer densitiesalsorelax exponertially
fast asin (28) and in general, the polymer size density
quickly approacesthe steady state when , > 1.

We focus on the kinetics in the more interesting non-
thermodynamic phase where the total polymer density

(28) vanishesat time to = 2In . This behavior is

consistert with the vanishing total density, Mg » N i 2,
implied by (25). Of course,the negative expression(28)
is invalid beyond the tipge to.

The momerts M, = | k"¢ provide a direct probe of
the kinetics. In the non-thermodynamic phase,the sys-
tem nucleates large macroscopicgels and consequetly,
large momerts diverge with the system size as follows
from (25). This, together with the vanishing overall den-
sity Mg, indicates that the system undergoesa gelation
transition at a nite time. At the gelation time tg, a gi-
ant polymer or a gelemergesasis the casefor irreversible
polymerization (, = 0). From the master equation (26),
the momerts ewlve according to

dMn_}Nl“nﬂNI M SLnily
_dt = 2m:1 m+1 VMin+1i m | 2n+ 1 n+l
N LanrlﬂB M (29)
m n+ljim
n+1m:2

where B, are the Bernoulli numbers[35]. For example,
the secondmomert obeysdM,=dt= M 2; 5(M3j 1). We
assumethat large order momerts divergealgebraically at
the gelation time, My » (tgi t)i @"*D for n | 1, and
obsene that the last term in the hierarchical equation
(29) is negligible compared with the rest of the terms.
We require that the time dependen term, the aggre-
gation term, and the remaining fragmenrtation term are
comparableand nd that a= j b= 1. Hence,
Mp» (tgj t)i ("D (30)
for n, 1. Indeed, the momerts divergeat a nite time.
The exponert nj 1 characterizing this divergenceis com-
patible with the near critical behavior (18). The diver-
gence (30) is di®erert than the M, » (tg i t)i @ni 3
behavior in irreversible fragmenrtation [23], and there-
fore, fragmentation quartitativ ely alters the nature of the
gelation transition.
We concludethat the solution to the master equation
(26) exhibits a "nite time singularity. Even though we
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cannot obtain the gelation time ty exactly, relevant prop-
erties of the sizedensity including the momerts can still
be obtained analytically. In particular, the form of the
size density at the gelation time can be calculated by
balancing the °uxes of massdueto aggregationand frag-
mertation, following the scaling analysisin ref. [36].

ConsiderM (M| the total massdensity of polymerswith
sizesmaller then n,

x
MM () =
k=1

ke (t): (31)

According to the master equation (26), this quartity
obeys

(n) x X
d'\gt = izjch+%,n(n+l)

i=lj+i=nj 1

G: (32

j=n+1

Wenow takethen! 1 limit. The aggregationlossterm
accourts for loss of nite size polymers to the in nitely
large gel while the fragmertation term accourts for the
balancing °ux from the gelinto small masses.We require
that the two °uxes balance at the gelation point. We
assumethat at the gelation point, the sizedensity deca/s
algebraically
(t = tg) » ki ¢; (33)
for k A 1, asis the casefor irreversible polymerization
[24]. By dimensionalcourting, the aggregation®ux term
scalesas n° 2¢ while the fragmentation °ux scalesas
ndi ¢ The two °uxes balancewhen5i 2¢ = 3j ¢ and
asaresult ¢ = 2. Therefore, ¢ (t = tg) » ki 2, a behav-
ior that is consistert with the aforemertioned divergence
of the momerts (30) when the power-law behavior (33)
holds up to a cuto® scale that divergesnear gelation,
ke (tgi )it =
The normalization condition |, kg = 1 imposesthe
exponert restriction ¢ > 2 but the heuristic argumert
above yields precisely the marginal value ¢ = 2. We
therefore anticipate that there is a logarithmic correction
with the following form ¢, » ki 2(In k)i * . We substitute
this form into (32) and then, the aggregationterm is of
the order n[Inn]* 2* while the fragmertation term is of
the order n[Inn]i *. Therefore,? = 1, and [37]
o » ki ?[Ink] ? (34)
for k A 1. This decay is milder then the ¢ » ki 572
behavior found for irreversible polymerization [24], and
therefore, there are many more large clustersin reversible
polymerization.
The size of the largest gel at the gelation transition
follgws immediately from the extreme statistics criterion,

N t‘-‘:l ¢« = 1. Remarkably, this sizeis nearly macro-
scopicin the size of the system,

kg» N[InNJ *: (35)



This gelsizeis much larger comparedwith the kg » N?2=3
behavior in reversible polymerization. This increased
scale enablesthe gel to withstand fragmertation. We
alsocommert that the nearly macroscopicsize scale(35)
provides the appropriate cuto®in (31), n » Kg, and that
at the gelation point, the upward massaggregation °ux
and the downward mass fragmertation °ux are nearly
macroscopic,that is, they are proportional to the system
sizeup to a logarithmic correction.

The critical case

For completeness,we discuss kinetics in the critical
case, = 1 where the the cluster density (28) is purely
exponertial, My = e 2, Similar decay characterizesthe
leading behavior of the size density. For example, the
monomer density obeys dg=dt=j ¢; + (Mg ¢;) and
consequetly,

2 - 1
= -6 524+ ¢ 2 36
1= 3 3 (36)
Only the 'rst term is relevant asymptotically,

ct' 2e %2 In general, ¢ ' uce 2 and by
substituting this expression into the time dependen
master equation (26), we obsene that the nonlinear
term is negligible. Consequetly, the coezcients ug

satisfy the recursion equation
M lﬂ Y
k i E Uk =
j=k+1

Uj i %(ki Dug: (37)

From this recursion, the coezcients uy satisfy U1 =ug =
(kj 2=3)=(k + 1). Therefore, the leading behavior of the
sizedensity is as follows

2 (ki %),

Ug = 3i(%)7i(k+ 1).

(38)

The tail of the sizedensity matchesthe near critical be-
havior (15), ¢x » e F2ki 573,

V. NUMERICAL SIMULA TIONS

We performed numerical simulations to validate the
theoretical predictions. Below, we preser results for the
non-thermodynamic phase.

The simulations were performed by starting with N
monomers and were carried by repeating the following
Monte Carlo step. At ead step, the total aggregation
rate Ra s e j sisj and the total fragmertation rate
Ri =2 (sii 1)arecalculatedwheres; isthe sizeof the
ith polymer. Of course,both of theserates are propor-
tional to the systemsize,R,/ R; / N. An aggregation
even is executedwith probability R,=(R, + R;), while a
fragmertation evert is executedwith the complemenary
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probability Rt =(R; + Rf). In ead aggregation evert,
one polymer is chosenwith probability proportional to
its sizeand is mergedwith another polymer, also chosen
with probability proportional to its size. In a fragmerta-
tion evert, a polymer, randomly chosenwith probability
proportional to the number of its bonds, is randomly split
into two smaller polymers. Time is updated by the in-
verseof the total rate t | t+ (R, + Rf)i ! after eah
Monte Carlo step. As a ched, we successfullyreproduced
the total polymer density (7).

In the non-thermodynamic phase, the system under-
goesa gelation transition and then relaxesto the steady
state. Werun the simulations until the systemrelaxedto
the steady state and then obtained the size distribution
from a long seriesof measuremets to reduce statistical
°uctuations. The simulations results are for systemsof
sizeN = 10°. We presert results for the normalized den-
sities % predicted in (23). Overall, there is very good
agreemen between the theoretical predictions and the
simulation results as shavn in "gure 2. The size distri-
bution agreeswith (23) and the tail of the distribution
follows a power-law as in (24). The simulation results
agreewith the theoretical results slightly better near the

10 T T T
10-1‘ —— simulation
- — — theory
10T T
.3_ _
10°F 1
10°F . 1
10%F (@) N T
7 1 1 1 X
10
10° 10" 10° 10° 10*
k
]_00 T T T
10" heen ]

-6 1 1
10
10° 10" 1&)2 10° 10*

FIG. 2: The sizedistribution % versusk for , = 0:9 (a) and
, = 0:5 (b). The simulations results are for a system of size
N = 10°.
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FIG. 3: Fluctuations in the total number of clusters. Shown
are the average number of clusters, N i and the variance,
?/42: H\It%ti i H\ltotizfor, = 0:5.

phasetransition point (Figures 2a and 2b). Sincethe to-
tal number of clusters grows sub-linearly with the system
size,Ni » N° with ° < 1, extremely large systemsare
neededto reducethe magnitude of the statistical °uctu-
ations. Sud °uctuations are most pronouncedat the tail
region wherethe discrepancybetweenthe theory and the
simulation is a result of the limited systemsize.

To quartify °uctuations in the total number of poly-
mers, we also measured the variance ¥ = hNZ,i j

Nt i2. We nd that the °uctuations follow a certral-
limit like behavior 3% » Ny i (‘gure 3) and therefore,
®» N with ©= -2 (39)

+ 2

asin (4).

VI.  DISCUSSION

In summary, we studied stationary and dynamical
properties of reversible polymerization. We found an
interesting phasetransition involving a thermodynamic
phaseand a non-thermodynamic phase. When fragmen-
tation is strong, the systemis in a thermodynamic phase
and the number of polymers is proportional to the sys-
tem size. The system includes a large number of small
polymers. When fragmenation is weak, the system is
in a non-thermodynamic phase as the total number of
polymers grows sub-linearly with the systemsize. In this
phase, there is a small number of large polymers since
the size distribution is power-law. Moreover, the poly-
mer sizesare distributed at all scales. Macroscopicgels
may exist as well.

In the thermodynamic phase,the system quickly ap-
proachesthe steady state. The time-dependert behavior
is much richer in the non-thermodynamic phase. The

7

system exhibits a "nite-time singularity: large momerts
of the sizedistribution divergeat the nite gelation time.
At this time, the system nucleatesmacroscopicgelsand
the size distribution follows a universal algebraic decyy.
Past the gelation time, there is a secondrelaxation stage
leading the system to a state where there are two bal-
ancing °uxes of mass: aggregation transfers mass from
small scalesto large scalesand fragmentation transfers
massfrom large scaleso small scales.The stationary size
distribution is algebraic but the characteristic exponert
iS not universal.

Even though the aggregation processis described by
non-linear terms, the analysisin the non-thermodynamic
phaseinvolves linear equations becausethe aggregation
gain term is relevant only at the largest scale. Neverthe-
less,formation of gelsat the largest possiblescale(in our
case,the systemsize)is crucial in maintaining a station-
ary state. Understanding the distribution of macroscopic
gelsis an open challenge,and our numerical simulations
reveal an interesting anomaly with an enhancemetn of the
population of macroscopicgelsover the algebraic distri-
bution (25) at the maximal scale.

Missing from our calculations is a nite-size scaling
analysis [38{41] near the phase transition point. In-
terestingly, the total number of clusters grows sub-
linearly, Nyt » C(,)N?73, just below the phase tran-
sition point, but linearly just above the phasetransition
point, Nyt » (, i 1)N. Therefore, the amplitude C(,)
may very well be divergert, and moreover, there must
be an intermediate range of fragmertation rates certered
around the critical point with a smooth crosswer be-
tweenthe two phases.The width of this transition region
should vanish as the system sizeincreases.

Understanding °uctuations is another interesting di-
rection for further researdyr. We nd Gaussian °uctua-
tions in the thermodynamic phaseand are able to com-
pute the variance ¥ = 2N but we are unable to obtain
(39) in the non-thermodynamic phase.

We also cheded that the samephasetransition gener-
ally holds as long as the aggregation rate is asymptoti-
cally proportional to the molecular weights; for instance,
when Kj = Aij + B(i + j) + C, a classof models that
often arise in polymer chemistry [3, 4. A more com-
plete characterization of phase transitions in reversible
polymerization is another avenue for future work.

Finally, another challengeis to understand the behav-
ior in low spatial dimensionsand in particular, to inves-
tigate the nature of the gelation transition aswell asthe
nature of the nonequilibrium steady state.
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APPENDIX  A: DET AILED BALANCE

In this appendix, we demonstratethat the detailed bal-
anceequations (2) do not generally have a solution. The
sizedensities ¢, satisfy

Kuc = Fuc
K12€1Cr = F12C3
K13C1C3 = F13C4

K22C5 = FpoCa
for k = 1;2;3;4. The dimer density and the trimer den-

sity are uniquely expressedn terms of the monomerden-
sity,

(A1)

Ku ..

_ Ku K s
Fu v

C = C3 = .
2 T Fu Fpp *

(A2)

However, there are two expressiondor the 4-mer density

3
K1 Ko Kz 2
—_ 4 — K1 Ko ~4.
= — ——=_=¢ c, = Ku Kz (A3
Fii Fio Fiz * e r 4P (A9)

These two are identical only when the aggregation and
the fragmentation rates satisfy the constraint

Ki2 K1z _

Fio Fis

K1 Koo,

Fi1 Foo'

(A4)

Therefore, the detailed balanceequations(2) have a solu-
tion only for specialaggregationand fragmertation rates.
The constraint (A4) re°ects the fact that there are mul-
tiple paths between two states of the system. For ex-
ample, a 4-mer may be formed by two dimers or by a
trimer and a monomer. The detailed balance condition



(2) requires that the °uxes between any two states of
the system balance along all possible paths. This con-
dition leadsto constraints of the type (A4). The rates
(3) violate the constraint (A4) aswell asin nitely many
other constraints. We concludethat in general, the de-
tailed balanceequationsare overdetermined | there are
in nitely many constraints like (A4), and a solution does
not necessarilyexist.

APPENDIX B: LAR GE-SIZE ASYMPTOTICS

We analyze the large-sizeasymptotic behavior of the
polymer size-densiy in the thermodynamic phaseby in-
troducing the generating function

X
G(z) = o€ (B1)
k
The generating function obeysthe di®ererial equation

(620)2 i G0=

Gi Mee? ,(Gj G9
>l e ' 2

(B2)

where ° % as follows from (5). Next, we shift the

generating function by the total density
G(z) = Mg + F(2); (B3)

where Mg is given by (7). With this transformation, the
di®erertial equation (B2) becomes

e+1
e 1

(FO%i @+ )F°+1i , +F

B 5

0. (B4)

By solving this quadratic equation for F°we nd

P
FA) = 1+ 51 ©@) (85)
with the shorthand notation
_1, . e+ 1
©(2) = R 2, i ,F(2 &1 (B6)

The asymptotic behavior of the size density follows
from the singular behavior of the generating function.
For instance, the asymptotic behavior

o' Ak ®el (B7)
implies that the generating function has the following
expansion

G(z) = G(a)+ GYa)(zi a)+ Aj(l | ®)(aj 2)® '+ :::

(B8)
when z ! a. Here, it is implicitty assumed that
2< ®< 3. By di®ereniating this equation and by us-
ing G°= F9 we further obtain

FY2) = FYa) + Ai2 i ®)(ai ) % (B9)

We now choosea to be the root of ©(z), ©(a) = 0, and
asa result, equation (B5) becomes

FO(Z): 1+ % pm(ai 2)1:2+ T

2

whenz ! a. We obtain F{a) = 1+ ,=2 by matching
the regular terms in (B9) and (B10), and

(B10)

p
®=5=2, Ai(i1=2)=i i©Ya) (B11)
by matching the singular terms. Therefore, the asymp-
totic behavior is (9).

The amplitude A can be expressedin terms of ©%a).

Di®erertiation of equation (B6) yields

' &+ 1 &
Nz2)=i, FY i 2F(2) B12
@)=i. F) g (2)(ezi 1)? (B12)
We next setz = a and use
e+1
FYa)= 1+ 5 2F (a) a1 4+ 5 (B13)
that follows from (B6) and ©(a) = 0 to obtain
' e+1 il
Oa) = : = . .
Ma)=i5 @+)g 11 B+ ) g 7 BLY

By using equations (B11) and (Bb4)_together with the
identity j( j 1=2)=j 2j(1=2)=j 4Ywe obtain arela-
tion betweenthe amplitude A and the constart a,

S

ea+l'
A= 2 2+, (8+
8ued | 1 SRCR

e
@+ 17

(B15)

In particular, A" P 3=(16Ya), when , ! 1.

APPENDIX  C: EXTREMEL Y STR ONG

FRA GMENT ATION

The leading asymptotic behavior in the strong frag-
mentation limit, , ! 1, can be obtained analytically.
The steady state equation (5) showsthat ¢; = 1+ O(, i )
andc, = i1+ O(, 1 2?), and that in general,

T2
2 |
' - hy

5

(C1)

when, ! 1.

To leading order, this form is consistert with the gov-
erning equation (5) when the coezcients hy satisfy the
recursion equation

X .
(ki Dhg = ij hih;:

i+j=k

(C2)

NI =

The rst two coezxcients are hy = 1 and h, = 1=2.
We solve this recursion using the generating equation



P
H(z) = |, khce¥?. Next, we multiply (C2) by ke*? and
sum over all k to 'nd that the generating function satis-
“es the nonlinear di®erertial equation
H% H=HH% (C3)
We now integrate this equation and "'nd the implicit so-
lution Hel H = €. The explicit solution

) Kki 1
H (Z) = T ekZ
k=1 ’

(C4)

follows from the Lagrangeinversionformula [42]. There-
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fore, the coexcients are hy = kXi 2=kl and the leading
asymptotic behavior is (10). The large-sizeasymptotic
behavior

HZe'ﬂki 1

&= po—kis2 £ ;

C5
2Ya s (C5)

whenpyk A 1, obtained using the Stirling formula
n!'»  2¥nn"e ", is consistert with the generic asymp-
totic behavior (9).



